Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2014

A ULF wave driver of ring current energization

ULF wave radial diffusion plays an important role in the transport of energetic electrons in the outer radiation belt, yet similar ring current transport is seldom considered even though ions satisfy a nearly identical drift resonance condition albeit without the relativistic correction. By examining the correlation between ULF wave power and the response of the ring current, characterized by Dst, we demonstrate a definite correlation between ULF wave power and Dst. Significantly, the lagged correlation peaks such that ULF waves precede the response of the ring current and Dst. We suggest that this correlation is the result of enhanced radial transport and energization of ring current ions through drift resonance and ULF wave radial diffusion of ring current ions. An analysis and comparison of the ion and electron diffusion coefficients further support this conclusion, ULF waves providing an important missing physical transport process explaining Dst underestimation in ring current models.

Murphy, Kyle; Mann, Ian; Ozeke, Louis;

Published by: Geophysical Research Letters      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1910.1002/2014GL061253

Dst; radial diffusion; ring current dynamics; ULF waves; wave particle interactions

The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm

We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convection electric field, are necessary to develop a strong ring current. Comparisons with Van Allen Probes observations show that our model reasonably well captures dispersed electron injections and the global Dst index.

Yu, Yiqun; Jordanova, Vania; Welling, Dan; Larsen, Brian; Claudepierre, Seth; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059322

ring current dynamics; self-consistent treatment of fields and plasma; Substorm Injections; Van Allen Probes



  1